Etapas de la fotosintesis

La fotosíntesis es un proceso que se desarrolla en dos etapas:

  • Reacciones lumínicas: es un proceso dependiente de la luz (etapa clara), requiere de energía de la luz para fabricar ATP y moléculas portadoras de energía NADPH reducido, a usarse en la segunda etapa.
  • Ciclo de Calvin- Benson: es la etapa independiente de la luz (etapa oscura), los productos de la primera etapa mas CO2son utilizados para formar los enlaces C-C de los carbohidratos. Las reacciones de la etapa oscura usualmente ocurren en la oscuridad si los transportadores de energía provenientes de la etapa clara están presentes. Evidencias recientes sugieren que la enzima más importante de la etapa oscura esta estimulada indirectamente por la luz, de ser así el termino no sería correcto denominarla «etapa oscura». La etapa clara ocurre en la grana y la oscura en el estroma de los cloroplastos.

6 CO+  12 H2 –>> C6H12O6  + 6 O2

Etapa clara

En la etapa clara la luz que «golpea» a la clorofila excita a un electrón a un nivel energético superior. En una serie de reacciones la energía se convierte (a lo largo de un proceso de transporte de electrones ) en ATP y NADPH. El agua se descompone en el proceso liberando oxígeno como producto secundario de la reacción. El ATP y el NADPH se utilizan para fabricar los enlaces C-C en la etapa oscura.

Imagen relacionada

Los fotosistemas son los conjuntos de moléculas de clorofila y otros pigmentos empaquetados en los tilacoides. En el «corazón» del fotosistema se encuentra la clorofila que absorbe la luz para convertirse en una forma «activada». La energía contenida en esta clorofila activada se utiliza para hacer funcionar la maquinaria química de la cual depende gran parte de la vida.

Muchos procariotas tienen un solo fotosistema: el fotosistema II (si bien fue el primero en la evolución, fue el segundo en descubrirse, de allí el II ). Los eucariotas usan el fotosistema II más el fotosistema I.

El fotosistema I usa la clorofila a en una forma denominada P700. El Fotosistema II usa una forma de clorofila conocida como P680. Ambas formas «activas» de la clorofila a funcionan en la fotosíntesis debido a su relación con las proteínas de la membrana tilacoide.


Modificado de la página de la University of Minnesota:

La fotofosforilación es el proceso de conversión de la energía del electrón excitado por la luz, en un enlace pirofosfato de una molécula de ADP. Esto ocurre cuando los electrones del agua son excitados por la luz en presencia de P680. La transferencia de energía es similar al transporte quimiosmótico de electrones que ocurre en la mitocondria.

La energía de la luz causa la eliminación de un electrón de una molécula de P680 que es parte del Fotosistema II, el electrón es transferido a una molécula aceptora (aceptor primario), y pasa luego cuesta abajo al Fotosistema I a través de una cadena transportadora de electrones. La P680 requiere un electrón que es tomado del agua rompiéndola en iones H+ y iones O-2. Estos iones O-2 se combinan para formar O2 que se libera a la atmósfera.

La luz actúa sobre la molécula de P700 del Fotosistema I, produciendo que un electrón sea elevado a un potencial mas alto. Este electrón es aceptado por un aceptor primario (diferente del asociado al Fotosistema II).
El electrón pasa nuevamente por una serie de reacciones redox, y finalmente se combina con NADP+ e H+ para formar NADPH, un portador de H necesario en la fase independiente de la luz.
Electrón del fotosistema II reemplaza al electrón excitado de la molécula P700.
Existe por lo tanto un continuo flujo de electrones (no cíclico) desde el agua al NADPH, el cual es usado para la fijación del carbono.
El flujo cíclico de electrones ocurre en algunos eucariotas y en bacterias fotosintéticas. No se produce NADPH, solo ATP. Esto también ocurre cuando la célula requiere ATP adicional, o cuando no hay NADP+ para reducirlo a NADPH.
En el Fotosistema II, el «bombeo» de iones H hacia adentro de los tilacoides (desde el estroma del cloroplasto) y la conversión de ADP + P en ATP es motorizado por un gradiente de electrones establecido en la membrana tilacoidea.

 


Flujo acíclico de electrones en los dos fotosistemas

Los diagramas superiores muestran una representación de la fotofosforilación. Hoy se conoce que dicho proceso ocurre en la membrana del tilacoide y esta asociado a la síntesis quimiosmótica del ATP (similar al de la mitocondria)

Las halobacterias, arqueobacterias que se desarrollan en concentraciones salinas extremas, son aeróbios facultativos, y pueden desarrollarse cuando el oxígeno esta ausente. Un pigmento púrpura, conocido como retinal (también se lo encuentra en el ojo humano, ¿la vida inventó dos veces el pigmento?) actúa de manera similar a la clorofila. El complejo de retinal y las proteínas de la membrana se conoce como bacteriorodopsina. El mismo genera electrones que establecen un gradiente de protones que motoriza una bomba ADP-ATP, generando ATP con la luz solar sin clorofila. Esto sostiene la idea que el proceso quimiosmótico es una forma universal de fabricar ATP.

 

Reacciones independientes de la luz

Las reacciones que fijan carbono son también conocidas como reacciones «oscuras» o reacciones «independientes de la luz». El anhídrido carbónico penetra en los unicelulares y autótrofos acuáticos sin necesidad de estructuras especiales. Las plantas terrestres deben protegerse de la desecación y han desarrollado aberturas especiales denominadas estomas que regulan la entrada y salida del gas por las hojas. El anhídrido carbónico de la atmósfera (o del agua en los organismos acuáticos) es capturado y modificado por la adición de hidrógeno para formar carbohidratos. (recuerde que la fórmula general de los carbohidratos es [CH2O]n ). La transformación del anhídrido carbónico en un compuesto orgánico se conoce como fijación del Carbono. La energía para ello proviene de la primera fase de la fotosíntesis. Los sistemas vivientes no pueden utilizar directamente la energía de la luz, pero pueden a través de una complicada serie de reacciones, convertirla en enlaces C-C y, esta energía puede ser luego liberada por la glicólisis y otros procesos metabólicos.

A fines de la segunda guerra mundial, en los laboratorios de Berkeley (California), Melvin Calvin y sus colaboradores, usando Carbono-14 (del cual disponía en abundancia) y las, entonces nuevas, técnicas de intercambio iónico, cromatografía en papel y radioautografía «mapearon» completamente el ciclo del Carbono en la fotosíntesis, por estos trabajos resultó laureado con el premio Nobel en 1961, y el ciclo del carbono se conoce comúnmente como ciclo de Calvin, o de Calvin-Benson.

 

El Ciclo de Calvin (o de los tres carbonos) se desarrolla en estroma de los cloroplastos (¿donde ocurrirá en los procariotas?). El anhídrido carbónico es fijado en la molécula ribulosa 1,5 bifosfato (RuBP). La RuBP tiene 5 carbonos en su molécula. Seis moléculas de anhídrido carbónico entran en el Ciclo de Calvin y, eventualmente, producen una molécula de glucosa.

.

El primer producto estable del ciclo es el ácido 3- fosfoglicérico (PGA), molécula de tres carbonos. Globalmente 6 moléculas de RuBP (ribulosa bifosfato) se combinan con 6 de anhídrido carbónico y dan 12 de 3-fosfoglicérico. La enzima que cataliza esta reacción es la RuBP carboxilasa (la rubisco), posiblemente la proteína mas abundante del mundo y se encuentra en la superficie de las membranas tilacoideas.

La energía del ATP y el NADPH generados por los fotosistemas se usan para «pegar» fosfatos (fosforilar) al 3-PGA y reducirlo a fosfogliceraldehido o PGAL, también de tres carbonos.


Ciclo de Calvin. Imagen de www.ncbi.nlm.nih.gov

Del total de 12 moléculas transformadas, dos moléculas de 3-PGAL salen del ciclo para convertirse en glucosa. Las moléculas restantes de PGAL son convertidas por medio del ATP en 6 moléculas de RuBP (5 carbonos), que recomienzan el ciclo.

Recuerde la complejidad de los seres vivos, al igual que en el ciclo de Krebs cada reacción es catalizada por una enzima específica.

Fotorrespiración.

La rubisco tiene una desventaja: tiene tanta facilidad para combinarse con el CO2 para activar la formación de azúcar como de combinarse con el Oxígeno y dar glicolato—> y luego glicina, que termina —> serina + CO2 en la mitocondria. Este proceso llamado Fotorrespiración usa ATP y NADPH pero libera CO2 en lugar de fijarlo.

La vía de 4 Carbonos

Algunas plantas han desarrollado un ciclo previo para evitar la Fotorrespiración, donde la fijación del CO2 comienza en el fosfoenolpiruvato (PEP), molécula de tres a 3-C, que se convierte en oxalacético de cuatro carbonos. El oxálico es convertido en ácido málico (también de cuatro carbonos). Todo esto ocurre en las células del parénquima clorofiliano del  mesófilo y luego el ácido málico pasa a las células de la vaina fascicular donde se desdobla nuevamente en PEP y anhídrido carbónico, que entra en el ciclo de Calvin, mientras que el PEP vuelve a las células del mesófilo. La glucosa formada puede ser transportada rápidamente al resto de la planta.

.

La captura del anhídrido carbónico por el PEP es mediada por la enzima PEP carboxilasa, que tiene mayor afinidad por el anhídrido carbónico que la RuBP carboxilasa.

Cuando los niveles de anhídrido carbónico bajan, la RuBP carboxilasa usa oxígeno en vez de anhídrido carbónico, y el resultado es ácido glicólico. Este producto se metaboliza en los peroxisomas (en presencia de luz y oxígeno) y este proceso se conoce como fotorrespiración. No produce ATP ni NADPH, es a todas vista un desmantelamiento del ciclo de Calvin lo cual reduce la eficiencia de la captura de anhídrido carbónico.

Las plantas que usan la vía de 4 carbonos, a menudo crecen muy juntas, y deben ajustarse a la disminución de anhídrido carbónico que este hecho implica. Lo hacen aumentando la concentración de anhídrido carbónico en ciertas células para prevenir la fotorrespiración.

Las plantas que usan la vía de los cuatro carbonos (por ejemplo caña de azúcar y maíz) evolucionaron en los trópicos y están adaptadas a mayores temperaturas. Note que el oxalacetato y el málico tienen funciones en otros procesos, por lo tanto están presentes en todas las plantas, permitiendo a los científicos hipotizar que la vía de los cuatro carbonos evolucionó independientemente muchas veces, en un mecanismo denominado evolución convergente.

Protección de las plantas contra el sol

El proceso fotosintético es más eficiente con niveles promedio de luz solar. A pleno sol, especialmente a mediodía, las plantas absorben mucha más energía de la que pueden usar. Si no encuentra una forma de dispersar la energía de una manera segura la clorofila pasa a un estado hiperexitado, desde el cual su energía puede transferirse al oxígeno dando como resultado «oxígeno singulet», un potente oxidante, que puede causar daño indiscriminado a la planta e inclusive su muerte. Entre los mecanismos antioxidantes para protección de las plantas se encuentran:

  • los carotenoides que son capaces de detoxificar a la planta del «oxígeno singulet» capturando su energía y disipándola en forma de calor.
  • atenuación no fotoquímica de la energía solar, proceso en el cual interviene una proteína que se encuentra asociada al fotosistema II conocida por las siglas PsbS.

EL CICLO DEL CARBONO

Las Plantas incorporan el anhídrido carbónico de la atmósfera y de los océanos al transformarlo en compuestos orgánicos, convirtiendo la energía de la luz en enlaces C-C. Las Plantas también producen anhídrido carbónico por su respiración. Los animales producen anhídrido carbónico derivado de la utilización de los hidratos de carbono y otros productos producidos por las plantas.

En el balance entre el consumo de anhídrido carbónico que realizan las plantas y la producción del mismo por los animales intervine como «buffer» la formación de carbonatos en los océanos, que remueve el exceso de anhídrido carbónico del aire y del agua (ambos intervienen en el equilibrio del anhídrido carbónico).

Los combustibles fósiles, como el petróleo y el carbón, como así también la madera generan anhídrido carbónico al ser utilizados. La actividad humana incrementa en grandes proporciones la concentración de anhídrido carbónico en el aire. Dado que este, a diferencia de otros compuestos de la atmósfera absorbe el calor reflejado desde la Tierra, incrementa la temperatura global y produce lo que ha dado llamarse «efecto invernadero».